Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
2.
Mucosal Immunol ; 14(6): 1259-1270, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34211125

RESUMO

The emerging concept of tissue specific immunity has opened the gates to new inquiries into what factors drive immune cell niche adaptation and the implications on immune homeostasis, organ specific immune diseases, and therapeutic efficacy. These issues are particularly complicated at barrier sites, which are directly exposed to an ever-changing environment. In particular, the gastrointestinal (GI) tract faces even further challenges given the profound functional and structural differences along its length, raising the possibility that it may even have to be treated as multiple organs when seeking to answer these questions. In this review, we evaluate what is known about the tissue intrinsic and extrinsic factors shaping immune compartments in the intestine. We then discuss the physiological and pathological consequences of a regionally distinct immune system in a single organ, but also discuss where our insight into the role of the compartment for disease development is still very limited. Finally, we discuss the technological and therapeutic implications this compartmentalization has. While the gut is perhaps one of the most intensely studied systems, many of these aspects apply to understanding tissue specific immunity of other organs, most notably other barrier sites such as skin, lung, and the urogenital tract.


Assuntos
Trato Gastrointestinal/fisiologia , Especificidade de Órgãos/imunologia , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Metabolismo Energético , Microbioma Gastrointestinal/imunologia , Homeostase , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mesentério
3.
Immunity ; 53(6): 1128-1130, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326762

RESUMO

Although many immune cells can secrete TGF-ß, whether all sources of TGF-ß are functionally equivalent is unknown. In this issue, Turner et al. uncover the importance of T regulatory (Treg) cell-intrinsic Tgfb1 gene dose in the prevention of autoimmunity and allergic disease.


Assuntos
Hipersensibilidade , Linfócitos T Reguladores , Autoimunidade , Humanos , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1
4.
Immune Netw ; 18(5): e33, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30402328

RESUMO

Interferon-gamma (IFNG) is a pleiotropic cytokine that modulates both innate and adaptive immune networks; it is the most potent activator of macrophages and a signature cytokine of activated T lymphocytes. Though IFNG is now appreciated to have a multitude of roles in immune modulation and broad-spectrum pathogen defense, it was originally discovered, and named, as a secretory factor that interferes with viral replication. In contrast to the prototypical type I interferons produced by any cells upon viral infection, only specific subsets of immune cells can produce IFNG upon infection or stimulation with antigen or mitogen. Still, virtually all cells can respond to both types of interferons. This makes IFNG a versatile anti-microbial cytokine and also gives it a unique position in the antiviral defense system. The goal of this review is to highlight the direct antiviral mechanisms of IFNG, thereby clarifying its antiviral function in the effective control of viral infections.

5.
Curr Opin Immunol ; 54: 93-101, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986303

RESUMO

Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.


Assuntos
Proteínas Relacionadas à Autofagia/imunologia , GTP Fosfo-Hidrolases/imunologia , Interferons/imunologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos
6.
J Cell Biol ; 217(7): 2503-2518, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29691304

RESUMO

Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C2 site of 27SB pre-rRNA. C2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C2 cleavage. Interestingly, when C2 cleavage is directly blocked by depleting or inactivating the C2 endonuclease, assembly progresses through all other subsequent steps.


Assuntos
Precursores de RNA/ultraestrutura , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/ultraestrutura , Precursores de RNA/química , Precursores de RNA/genética , RNA Ribossômico/química , RNA Ribossômico/genética , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
7.
Bioessays ; 40(6): e1700231, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603284

RESUMO

A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health.


Assuntos
Antivirais/metabolismo , Autofagia/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Interferons/metabolismo , Vírus de RNA/metabolismo , Animais , Humanos , Vacúolos/metabolismo
9.
Cell Host Microbe ; 22(1): 74-85.e7, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28669671

RESUMO

All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Interferons/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Norovirus/genética , Norovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Autofagia , Infecções por Caliciviridae/virologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Citosol , Feminino , Fibroblastos , GTP Fosfo-Hidrolases/imunologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interferons/farmacologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Norovirus/imunologia , Norovirus/patogenicidade , Células RAW 264.7 , Vacúolos/microbiologia , Ensaio de Placa Viral
10.
Nature ; 534(7605): 133-7, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251291

RESUMO

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sequência de Bases , Domínio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...